Modeling of Multiple Scattering from an Ensemble of Spheres in a Laser Beam

Vladimir I. Ovod*

(Received: 12 October 1998; resubmitted: 12 February 1999)

Abstract

This paper details the results of upgrading an effective numerical technique (derived for multiple-scattering simulations in photon correlation/cross-correlation with a plane-wave light source) for the modeling of multiple scattering in a laser beam. The off-axis shape coefficients of an arbitrary beam are computed starting from the set of known beam-shape coefficients for an on-axis location by using the addition theorem for the spherical vector wavefunctions of the first kind. The discussed technique is verified by comparison with a localized approximation for a focused Gaussian beam and with Barton’s spheres-arbitrary beam interaction theory. An additional advantage of the proposed technique (self-testing of the computation accuracy by comparison of the off-axis beam-shape coefficients evaluated from two different on-axis origins) is demonstrated.

1 Introduction

Modeling of multiple scattering of a plane wave [1–8] and a laser beam [9–12] by homogeneous spheres has been a topic of research interest in a variety of areas of practical applications, including the design of optical sizing systems and signal interpretation in such instruments. In our previous papers [13, 14], the formalism of exact electromagnetic wave multiple scattering theory [3, 4] was used for the first time for signal modeling in photon correlation spectroscopy with a plane-wave light source. To extend this formalism to the more practical case with laser beam illumination, one of the well known techniques may be used for simulation of the beam-shape coefficients, e.g. the generalized Lorenz-Mie theory (GLMT) [15, 16], the angular spectrum of plane waves [12, 17, 18] or the translation addition theorem for the spherical vector wavefunctions (SVWFs) [19]. The main advantage of the addition-theorem technique [19] is its validity for an arbitrary beam with known on-axis beam-shape coefficients, which characterize the laser beam along its propagation axis. The more general, off-axis, coefficients are computed starting from the set of the on-axis coefficients by using the addition theorem for the SVWF of the first kind. The discussed technique is verified by comparison with a localized approximation for a focused Gaussian beam and with Barton’s spheres-arbitrary beam interaction theory. An additional advantage of the proposed technique (self-testing of the computation accuracy by comparison of the off-axis beam-shape coefficients evaluated from two different on-axis origins) is demonstrated.

2 Multiple Order Scattering by an Ensemble of Moving Spheres

2.1 Plane Wave Illumination

We assume that a plane wave with wavenumber \(k \) propagates along the \(Z \) axis and illuminates an ensemble of \(N \) spheres positioned in a non-absorbing medium \(L \). The wavenumber is defined by

\[
k = \frac{2\pi n_L}{\lambda},
\]

where \(n_L \) is the refractive index of the medium and \(\lambda \) is the wavelength in vacuum. As in previous papers [13, 14], the scattered electric field, \(E_i \), from the entire ensemble of spheres is taken to be the superposition of scattered fields, \(E_i' \), from each of the spheres in the ensemble, i.e.

\[
E = \sum_{i=1}^{N} E_i',
\]

where

\[
E_i' = E_iD(X)\sum_{d=1}^{\infty}\sum_{m,n=-d}^{d} \left[d'_{mn1}N_{mn}^{(3)}(\hat{R}_d) + d'_{mn2}M_{mn}^{(3)}(\hat{R}_d) \right],
\]

spheres is given in Section 2.1 for the so-called single/common-origin approach. Increasing the computation efficiency by the multiple-origins approach is discussed briefly in Section 2.2. Relationships between the expansion coefficients of an arbitrary incident beam and its beam-shape coefficients derived by using an addition theorem for the SVWF are presented in Section 2.3. In Section 3, simulated results are compared with data published for the interaction of a single sphere and two spheres with a Gaussian beam and a plane-wave.
\mathbf{R}_i^t is the vector between the origin of the particle i and a point detector d, \mathbf{X} is the position vector of the origin of particle i in the coordinate system of the particle ensemble (which coincides with the XYZ experimental coordinate system), respectively, $D(\mathbf{X})$ is the relative sensitivity of detector d, and $a_{\alpha\mu\nu}$ is the scattered field expansions of order n and degree m. The extra index p denotes the mode, in which $p = 1$ and $p = 2$ refer to the TM and the TE modes, respectively, of the scattered field. The incident field strength in the z' cross-section is given by

$$E_{0}^{i} = E_{0} \exp(ikL_{0}) \exp\left(-\frac{k_{\text{in}}L_{0}}{2}\right),$$

(4)

where E_{0} is the field strength of the incident beam, L_{0} is the distance that the beam has traveled to the ensemble origin e, $i = (-1)^{1/2}$ is the unit imaginary number and L_{0} is the distance the beam has traveled through the suspension of turbidity k_{in} (in fact, k_{in} is the imaginary part of the wavenumber of light in a dispersed system) to the origin of particle i. As we are working in the framework of elastic light scattering, we omit the time-dependent term $\exp(-i\omega t)$ from all equations, as is the normal practice.

The vector of the scattered field E_{α}^{i}, the vector spherical harmonics $M_{\alpha\mu}$ and N_{μ} and the vector \mathbf{R}_i^t are given in a spherical coordinate system (R^t, θ^t, and ϕ^t) of the sphere i. The superscript (3) on the coefficients denotes that the coefficients are based on the spherical Hankel functions. The scattered field expansions $a_{\alpha\mu\nu}$ of the order n and degree m employing the single-scattered component ($u = 1$) and the multiple-scattering ($u = 2$) can be expressed by

$$a_{\alpha\mu\nu}^{1,2} = \sum_{\mu'\nu'} a_{\alpha\mu'\nu'}^{1,2} \rho_{\alpha\mu'\nu'\mu\nu},$$

(5)

The subscript ϵ for x or y denotes the scattering coefficients calculated for the parallel (along the X axis) or perpendicular (along the Y axis) incident polarization, respectively. The single-scattering and the multiple-scattering components can be written as

$$a_{\alpha\mu\nu}^{1,2} = \sum_{\mu'\nu'} a_{\alpha\mu'\nu'}^{1,2} \rho_{\alpha\mu'\nu'\mu\nu},$$

(6)

where

$$a_{\alpha\mu\nu}^{1,2} = \sum_{\mu'\nu'} a_{\alpha\mu'\nu'}^{1,2} \rho_{\alpha\mu'\nu'\mu\nu},$$

(7)

and $a_{\alpha\mu\nu}$ and $a_{\alpha\mu\nu}$ are the well-known TM and TE Lorenz-Mie coefficients of the isolated sphere. The addition coefficients A and B of the third kind depend entirely on the distance R^t and the direction of translation Θ^t, Φ^t of origin j to i. The expansion coefficients of the incident plane wave propagating in direction z

are given by [3]

$$p_{1\mu\nu}^{i1,2} = \frac{-i^{\mu+1}}{2} \frac{2n+1}{m(n+1)} \exp(ikz'),$$

(10)

As we can see, the scattering Eqs. (5) and (8) are written for all N particles that participate in the scattering, thus producing a set of coupled $(p = 1, 2)$ linear Eqs. (5) for the scattered field expansions. The set of these coupled equations is most commonly solved by the order-of-scattering technique [1, 2] or by iteration methods [3–8].

It must be noted that the scattered field expansions for all N particles are obtained now in their own coordinate systems. Hence the accompanying vector spherical harmonics have to be translated from the individual particle origins back to the common (ensemble) origin. As a result of this translation, the required number of orders, N_{ϵ}, in the expansions for the scattered field from sphere j in Eq. (7) is large, because this number depends not only on the size of the sphere but also on the above mentioned translation distance [4]. This last translation (used in our previous investigation [13] in the so-called single/common-origin approach) causes numerical convergence problems that have been discussed comprehensively elsewhere [8]. These problems are eliminated if one is interested in far-zone scattering only. In this case (so-called multiple-origins approach), the last set of translation coefficients has a straightforward analytical form [8], and the required number of orders N_{ϵ} in the expansions for the scattered field from the jth sphere depends on the size parameter of this sphere only as shown in Ref. [20] by

$$N_{\epsilon} = \rho^t + 4(\rho^t)^{1/3} + 2,$$

(12)

where $\rho^t = kR^t$ is the Mie parameter and a^t is the radius of the jth sphere.

2.2 Far-zone Assumption

Most optical systems for particle sizing are based on the detection of the light scattered in the far zone, when smallest distance R_{ij}^t for each sphere is larger than the largest distance between the spheres, R^t. For the far-zone assumption, the spherical Hankel functions can be replaced by their asymptotes [8], and the orthonormal unit vectors \hat{r}, $\hat{\theta}$, and $\hat{\phi}$ for the i sphere coincide with the corresponding orthonormal unit vectors \bar{r}, $\bar{\theta}$, and $\bar{\phi}$ for the entire ensemble. Taking into account the above-mentioned asymptotes of the spherical Hankel function, we can write the vector spherical harmonics in the far zone [8] as

$$M_{\alpha\mu\nu}^{(3)}(kR_{ij}^t) = (-i)^{\mu+1} \frac{\exp(i\mathbf{k}R_{ij}^t)}{kR_{ij}^t} \exp\left(-\frac{k_{\text{in}}L_{ij}^t}{2}\right) \times \left[\tau_{\alpha\mu\nu}(\hat{\theta} \hat{\phi}) - \tau_{\alpha\mu\nu}(\hat{\theta} \hat{\phi}) \exp(\text{in}\phi') \right],$$

(13)

$$N_{\alpha\mu\nu}^{(3)}(kR_{ij}^t) = (-i)^{\mu+1} \frac{\exp(i\mathbf{k}R_{ij}^t)}{kR_{ij}^t} \exp\left(-\frac{k_{\text{in}}L_{ij}^t}{2}\right) \times \left[\tau_{\alpha\mu\nu}(\hat{\theta} \hat{\phi}) + \tau_{\alpha\mu\nu}(\hat{\theta} \hat{\phi}) \exp(\text{in}\phi') \right].$$

(14)
where
\[\tau_{\text{tan1}}(\theta) = \frac{d}{d\theta} P_{n}^{m} \cos(\theta), \quad \tau_{\text{tan2}}(\theta) = \frac{m}{\sin(\theta)} P_{n}^{m} \cos(\theta) \] (15)
are the scattering functions, \(P_{n}^{m} \) stands for the associated Legendre function of the first kind [3] and \(L_{\text{ad}} \) is the distance in the suspension from the origin of the particle \(i \) to point detector \(d \). The scattered wave vector relative to the origin of the particle \(i \) is defined by
\[k_{j}' = \frac{kR_{j}'}{R_{j}} = k(\sin \theta' \cos \varphi' \hat{x} + \sin \theta' \sin \varphi' \hat{y} + \cos \theta' \hat{z}), \] (16)
where \(\hat{x} \), \(\hat{y} \), and \(\hat{z} \) are the unit vectors of the Cartesian coordinate system.
We consider that \(R_{j}' \approx R_{j} \) in the far zone and that the relation between the position vectors of sphere \(i \) and detector \(d \) can be expressed by
\[R_{j}' = R_{j} - X_{i} \] (17)
where \(R_{d} \) is the position vector of the detector in the experimental frame.
By inserting Eq. (17) into Eqs. (13) and (14), and then Eqs. (13) and (14) into Eq. (3), we can rewrite the expression for the \(E_{j}' \) field scattered from sphere \(i \) in a form that is suitable for the analysis of particle motion on the signal [14], i.e.
\[E_{j}' = i \hat{Y}P_{n}^{m}, \] (18)
where
\[T = E_{0}D(X') \frac{\exp(ikR_{j}')}{kR_{j}'} \exp(ikL_{\text{p}}) \exp\left(-ik \frac{L_{\text{ad}} + L_{\text{id}}}{2}\right) \] (19)
is a coefficient which does not depend strongly on the motion of particle \(i \). The vector scattering amplitude, \(P_{n}^{m} \), reflects the main contribution of the particle motion to the signal in the photon cross-correlation. The components of vector \(P_{n}^{m} \) of the scattering amplitudes, polarized in the \(\hat{y} \) and \(\hat{y} \) directions [6], are expressed by
\[P_{0}^{m} = \exp(-ikX') \left[S_{1}(\theta', \varphi') e_{1}' + S_{2}(\theta', \varphi') e_{2}' \right], \] (20)
\[P_{0}^{m} = \exp(-ikX') \left[S_{1}(\theta', \varphi') e_{1}' + S_{2}(\theta', \varphi') e_{2}' \right], \] (21)
where \(e_{1}' \) and \(e_{2}' \) are the components of the unit polarization vector of the plane wave that illuminates sphere \(i \), and
\[S_{1}(\theta', \varphi') = \sum_{n=1}^{N} \sum_{m=-n}^{n} (-1)^{n} d_{m,n,p}^{m,p} \tau_{\text{tan1}}(\theta') \exp(\text{im}\varphi'), \] (22)
\[S_{1}(\theta', \varphi') = \sum_{n=1}^{N} \sum_{m=-n}^{n} (-1)^{n+1} d_{m,n,p}^{m,p} \tau_{\text{tan2}}(\theta') \exp(\text{im}\varphi'), \] (23)
\[S_{3}(\theta', \varphi') = \sum_{n=1}^{N} \sum_{m=-n}^{n} (-1)^{n+1} d_{m,n,p}^{m,p} \tau_{\text{tan3}}(\theta') \exp(\text{im}\varphi'), \] (24)
\[S_{3}(\theta', \varphi') = \sum_{n=1}^{N} \sum_{m=-n}^{n} (-1)^{n} d_{m,n,p}^{m,p} \tau_{\text{tan4}}(\theta') \exp(\text{im}\varphi'), \] (25)
are the four elements of the amplitude scattering matrix [5, 6]. As mentioned above, the subscript \(e \) for \(x \) or \(y \) denotes a scattering coefficient calculated for parallel (along the \(X \) axis) or perpendicular (along the \(Y \) axis) incident polarization, respectively. We assume the same polarization of the incident wave for all particles, i.e.
\[e_{x}' = E_{x}, \quad E_{0}, \] (26)
\[e_{y}' = E_{y}, \quad E_{0}, \] (27)
where \(E_{x} \) and \(E_{y} \) correspond to incident plane wave polarization in the \(x \) and \(y \) directions, respectively, in the cross-section of the light emission.

The exponential coefficient in Eqs. (20) and (21) is the product of Eq. (17) in the above-mentioned multiple-origins scattering approach, and its use eliminates the last translation of the partial wave scattering amplitudes \(d_{m,n,p}^{m,p} \) in Eqs. (22)–(25) from the origin of each sphere to the common (envelope) origin. This exponential coefficient confirms that our model is in agreement with published results [8] based on deriving the analytical expression for the vector coefficients of the last translations to the common origin. The computation efficiency of the multiple-origins approximation of the scattering by a particle ensemble in the far zone was investigated recently [8] in comparison with the single-origin approximation for the far-field scattering [3].

2.3 Arbitrary Beam Illumination

The core of the proposed upgrade strategy is the off-axis expansion coefficients \(p_{m,n,p}^{e} \) of an arbitrary beam at the origin of the \(i \)th sphere. If an on-axis origin, \(e \), is chosen on the \(Z \) axis of the laser beam, these coefficients can be simulated by using a translation addition theorem for spherical vector wave functions [19], i.e.
\[p_{m,n,p}^{e} = \sum_{l=1}^{N} C_{l} \sum_{k=-l}^{l} A_{k}^{(l)}(k R_{i}, \Theta^{e}, \Phi^{e}) p_{l,p,c}^{n} + B_{k}^{(l)}(k R_{i}, \Theta^{e}, \Phi^{e}) p_{l,p,c}^{n}, \] (28)

The addition coefficients \(A \) and \(B \) of the first kind depend on the distance \(R_{i}^{e} \) and the direction of translation \(\Theta^{e}, \Phi^{e} \) of the on-axis origin \(e \) to the origin of the \(i \)th sphere. The expansion coefficients at the on-axis origin can be expressed by
\[p_{m,n,p}^{e} = \sum_{l=1}^{N} C_{l} \sum_{k=-l}^{l} A_{k}^{(l)}(k R_{i}, \Theta^{e}, \Phi^{e}) p_{l,p,c}^{n} + B_{k}^{(l)}(k R_{i}, \Theta^{e}, \Phi^{e}) p_{l,p,c}^{n}, \] (29)
where \(p_{l,p,c}^{n} \) are the well known expansion coefficients for the plane-wave incident field [5]. The normalized constant \(C_{mn} \) can be expressed as in Ref. [19]:
\[C_{mn} = \begin{cases} C_{n} & m \geq 0 \\ (-1)^{m} \binom{l + |m|!}{l - |m|!} C_{n} & m < 0 \end{cases}, \] (31)
where
\[C_{n} = i^{l-1}(2n + 1) \binom{n}{n + 1}. \] (32)
It is evident that coefficients defined by Eqs. (10) and (30) coincide where \(\beta = 0 \). To evaluate the TE and \(\beta \)-polarized on-axis
expansion coefficients $p_j^{l=m,p,c}$, one can use Eq. (11), which was defined for the plane-wave expansion coefficients.

According to the presented formalism, the classical on-axis coefficients g_n^e are taken as starting coefficients for an arbitrary incident beam. To simulate the starting on-axis coefficients for a Gaussian laser beam, any known analytical expression for g_n^e can be used [21]. In our simulations we use the modified localized approximation [15] for the high-order Davis beam, i.e.

$$g_n^e = Q \exp[-(n-1)(n+2) \Omega_s] \exp(ik \hat{z}^e)$$

and the μth-order Barton symmetrized beam [15, 21], which is given by

$$g_n^{\mu e} = \sum_{l=0}^{l+2} \sum_{m=0}^{m+1} \left(\begin{array}{c} m \\ l \end{array} \right) \left(\begin{array}{c} m + 1 \\ 0 \end{array} \right) (-1)^l \frac{2i \hat{z}^{\mu e}}{\alpha_o} \left(\begin{array}{c} m + 1 \\ l \end{array} \right) \left(\begin{array}{c} m + 1 \\ l \end{array} \right) \frac{\hat{r}}{l!} (n-l) \frac{\hat{r}^2}{l!} (n-l)! \exp(ik \hat{z}^{\mu e})$$

where the on-axis origin e is characterized by the \hat{z}^e coordinate. The fundamental parameter related to the waist radius α_o is defined by

$$s = \frac{1}{k \alpha_o}$$

and

$$Q = \frac{1}{1 + 2i \frac{2 \alpha_o}{k \hat{z}^e}}$$

If one is interested in the Davis beam of the first order only, characterized by the first-order on-axis coefficients, which are defined by

$$g_n^e = Q \exp\left[-\left(n + 0.5\right)^2 \Omega_s^2\right] \exp(ik \hat{z}^e)$$.

the integral representation technique [19] can be used as an effective solution of Eq. (28).

Relationships between two kinds of off-axis beam-shape coefficients (defined in the classical formalism and in the presented technique) can be expressed at the origin of sphere i by

$$g_i^{j \mu TM_{0,c}} = \frac{1}{C_{mn}} P_{0,m}^{p=1,c}$$

and

$$g_i^{j \mu TE_{0,c}} = \frac{1}{C_{mn}} P_{0,m}^{p=2,c}$$.

3 Numerical Results

The formulation presented in this paper has been used to upgrade the computer code developed recently for the signal modeling in photon correlation/cross-correlation spectroscopy [13, 14]. The code involves numerical algorithms developed by Mackowski [3, 4] for the addition coefficients A and B, and for solving of coupled ($p = 1, 2$) linear Eqs. (5) for the scattered field expansions when the single/common origin approach is used. We do not intend to discuss the numerical results in detail. Numerical calculations are presented to illustrate the correctness of the upgraded code by comparison with published data.

Table 1 shows a quantitative comparison of the localized approximation method (data are borrowed from Ref. [19] for an x-polarized Gaussian TEM$_{00}$ beam with $\alpha_o = 5 \mu m$, $\lambda = 0.5 \mu m$, $n_L = 1$, $x' = y' = 2 \mu m$, $z' = 10 \mu m$) and the addition-theorem method concerning the values of the g_{mn}^{TM}. The analytical expression Eq. (34) for the fifth-order Barton symmetrized beam [15] is used to simulate the starting on-axis coefficients g_n^e at $\hat{z}^e = \hat{z} = 10 \mu m$. The cumulative relative differences for the real and imaginary parts, which are less than 0.12%, confirms the good agreement between the two techniques. Different signs are caused by the fact that the definition of the Legendre functions P_n^m in the two compared techniques differs by the coefficient $(-1)^m$ [3, 19].

It must be noted that the additional advantage of the described technique is that it permits the self-testing of the computation accuracy by comparison of the off-axis beam coefficients evaluated from two different on-axis origins, for example, from $\hat{z}^e = 0$ and from $\hat{z}^e = \hat{z}$ (where \hat{z} is the coordinate of the ith sphere along the Z axis). The cumulative relative difference, CRD, for the real and imaginary parts defined by

$$CRD = 1 \left[\frac{\text{Re} \left(g_{mn}^{TM,0,c} (\hat{z}) \right) - \text{Re} \left(g_{mn}^{TM,0,c} (0) \right) }{\text{Re} \left(g_{mn}^{TM,0,c} (\hat{z}) \right) } \right]$$

is shown in Figure 1 for the x-polarization of the fifth-order Barton symmetrized beam with $\alpha_o = 5 \mu m$, $\lambda = 0.5 \mu m$, $n_L = 1$, $x' = y' = 2 \mu m$ and $z' = 10 \mu m$. The fact that the CRD is less than 0.031% confirms the high accuracy of the addition-theorem technique and the effectiveness of the self-testing that is available with it.
Fig. 2: Scattering schemes modeled in this paper to illustrate the correctness of the upgraded code by comparison with data published in Refs. [8] and [9]. Two spheres are illuminated by a plane wave (a) or a Gaussian beam of the waist radius \(a_o = 5a \) and \(a_o = 2.22a \) (b and c, respectively). Each sphere of radius \(a = \rho/k \) has a size parameter of \(\rho = 3.083 \) (a and b) and \(\rho = 11 \) (c). The refractive index of each sphere is 1.61 + \(i \times 0.004 \) (a and b) and 1.334 + \(i \times 1.2 \times 10^{-9} \) (c) in a medium of refractive index \(n_L = 1 \). In (c), two spheres are positioned in a Gaussian beam at \((x = y = z = 0)\) and \((x = 2a, y = 0, z = 3.46a)\), respectively.

An additional verification of the proposed technique, Figure 6 illustrates the normalized intensity (the time-averaged Poynting vector) as a function of angle in the \(x-z \) plane for two spheres positioned as shown in Figure 2c.

The required number of scattering terms, \(N_{O_s} \), for the single-origin approach is 15 if \(R^{ij} = 2.6a \) and 26 if \(R^{ij} = 10a \). Figures 3 and 4 show a negligible difference between the SO approach and the more efficient MO approach which requires only \(N_{O_s} = 9 \) scattering terms. The angular distribution of \(i_{11} \) for an intersphere separation \(R^{ij} = 2.6a \) in Figure 3 and \(i_{11} \) for \(R^{ij} = 10a \) in Figure 4 are in good agreement with results published recently [8] (Figures 1, 3 and 6).

As mentioned above, the discussed technique permits modeling of the multiple-scattering effects in an arbitrary beam. Figures 5 and 6 illustrate a multiple scattering simulation in Gaussian beams. Figure 5 shows the angular distribution of the scattering intensity \(i_{11} \) from two spheres of radius \(a \) positioned with intersphere separation of \(R^{ij} = 10a \) in the Gaussian beam as shown in Figure 2b.
vector) in one of Barton’s known scattering schemes (see Figure 2c). This scheme [9] is characterized by two spheres of size parameter $\rho = 11$ (radius $a = \rho/k$) and refractive index 1.334 + i1.2 \times 10$^{-9}$, that positioned at $(x = y = z = 0)$ and $x = 2a$, $y = 0$, $z = 3.46a$, respectively, in a Gaussian beam of waist radius $\omega_0 = 2.22a$ as shown in Figure 2c. The time-averaged Poynting vector is defined by

$$S_r = \frac{|S_x(\theta, \varphi = 0)|^2 + |S_y(\theta, \varphi = 0)|^2}{\pi \rho^2}.$$

The angular distribution of the normalized intensity S_r presented in Figure 6 is in good agreement with published data Ref. [9] (Figure 7).

4 Conclusions

Direct use of the addition theorem for the spherical vector wave in one of Barton’s known scattering schemes (see Figure 2c). This scheme [9] is characterized by two spheres of size parameter $\rho = 11$ (radius $a = \rho/k$) and refractive index 1.334 + i1.2 \times 10$^{-9}$, that positioned at $(x = y = z = 0)$ and $x = 2a$, $y = 0$, $z = 3.46a$, respectively, in a Gaussian beam of waist radius $\omega_0 = 2.22a$ as shown in Figure 2c. The time-averaged Poynting vector is defined by

$$S_r = \frac{|S_x(\theta, \varphi = 0)|^2 + |S_y(\theta, \varphi = 0)|^2}{\pi \rho^2}.$$

The angular distribution of the normalized intensity S_r presented in Figure 6 is in good agreement with published data Ref. [9] (Figure 7).

5 Symbols and Abbreviations

A, B
addition coefficients

a^j
radius of sphere j

a_{mp}
scattered field expansion

C_{mn}
normalized constant

CRD
cumulative relative differences

D
relative sensitivity of detector

d^p
subscript for the point detector

d
diameter of the ith sphere

E_s
scattered field

E_o
field strength of the incident beam

c_x, c_y
components of the polarization vector of the incident field

g_{mn}
classical beam-shape coefficients

i
unit imaginary number

i, j
superscripts for sphere i and sphere j, respectively

i_{11}, i_{22}
scattering intensities

k
wavenumber

k_{im}
imaginary part of the wavenumber of light in a dispersed system (turbidity)

L_{bi}
distance the beam has traveled through the suspension to the origin of particle i

L_e
distance that the beam has traveled to the ensemble origin e

L_{id}
distance in the suspension from the origin of particle i to point detector d

M_{mn}
vector spherical harmonics

N_m
multiple-origin approach

n
required number of orders in the expansions for the scattered field from sphere j

n_0
superscript that denotes the order of the field expansions

P_i^m
vector scattering amplitude for sphere i

$P^m_{n_0}$
superscript that refers to the TM ($p = 1$) or the TE ($p = 2$) mode

R_{ij}
position vector of the point detector relative the origin of the particle ensemble

$S_i - S_d$
elements of the amplitude scattering matrix

S_r
normalized intensity (the time-averaged Poynting vector)

s
fundamental parameter in localized approximation for a focused Gaussian beam

T
coefficient which does not depend strongly on the motion of a particle

X, Y, Z
position vector

u, v, w
unit vectors of the Cartesian coordinate system

α_{m1}, α_{m2}
TM and TE Lorenz-Mie coefficients of an isolated sphere, respectively

ε
superscript that denotes $X(\varepsilon = x)$ or $Y(\varepsilon = y)$ polarization of the incident beam

λ
wavelength

ρ
Mie parameter

τ_{mn}
scattering functions

ω_0
waist radius of the incident beam

6 References

