Modeling of multiple-scattering suppression
by a one-beam cross-correlation system

Viadimir [. Ovod

I detail the results of adapting a rigorous algorithm, derived for multiple-scattering simulations in photon
correlation spectroscopy, for modeling multiple-scattering suppression by a cross-correlation system that
employs one laser beam and two slightly tilted detectors. The practical significance of the proposed
numerical technique is shown for optimization of an arbitrary design configuration of cross correlation
and for prediction of the ideal performance that is possible with that design. It is shown that the
behavior of the coherent factor modeled versus the angle between detectors is in agreement with
experimental data and analytical investigation. This factor permits mapping of the spatial extent of the
single-scattering and the multiple-scattering speckles. The map holds important information about the
optimal displacement of detectors for a given measurement setup, and it permits a comprehensive
investigation of suppression of the scattering components, even when their magnitudes are small.
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1. Introduction

Numerical modeling of multiple scattering by dis-
persed systems, which affects particle characteriza-
tion in photon correlation spectroscopy, is of key
importance for improving the spectroscopy’s perfor-
mance parameters.2 The commonly used methods
for multiple-scattering simulation in semidilute
systems®-5 and in dense suspensions®’ are monomer-
based methods. In other words, they do not permit
the simulation of the scattering cross section of an
ensemble of particles that is characterized by differ-
ent optical properties and diameters; i.e., they take
into account the phase factors of monomers and the
scattering cross section of single particles only. Dif-
fusing wave spectroscopy® and correlation transfer
theory? are built on knowledge of the single-
scattering correlation function, which is often un-
known.

To overcome the limitations mentioned above,
Ovod et al.8 recently derived and introduced a new
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technique for the investigation of fine multiple-
scattering effects in fiber optic photon correlation
spectroscopy. The technique involves the algorithm
developed by Mackowski®1° for use of a rigorous cal-
culation of the scattering of a plane wave from
multiple-sphere clusters instead of the Rayleigh—
Gans-Debye approximation.>® One of the best ad-
vantages of using the rigorous multiple-scattering
technique instead of the Rayleigh—-Gans—Debye ap-
proximation in the important range of 0.05-5-pm
particle diameters is the following: This rigorous
technique allows for the estimation of the perfor-
mance characteristics of different particle sizers
{(based on the dynamic as well on the static light-
scattering phenomena) in the broad range of parti-
cles’ refractive indices.

In this paper I detail the results of adapting the
rigorous algorithm for the simulation of multiple-
scattering suppression in the far zone by a new
one-beam cross-correlation system. The new cross-
correlation method for characterizing particles in
turbid media was studied experimentally-12 and an-
alytically.13 The method relies on the positioning of
two detectors on the same single-scattering coher-
ence area but on different multiple-scattering coher-
ence areas, which are physically smaller than the
single-scattering speckle.

It is my aim in this paper to provide a comprehen-
sive analysis of the multiple-scattering suppression
phenomena in cross-correlation by numerical model-
ing and to demonstrate the perspectives of the pro-
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Fig. 1. Schematic representation of the cross-correlation setup at
6 = 90°. Hidden detector B is located in the same x~v plane as is

shown for the detector A. A laser beam propagates through a
scattering cell of volume V, illuminating sample volume V,. Both
detectors view the same sample volume, V,. The intersection of
V, and V, volumes is denoted V,. The average numbers of par-
ticles in these volumes are N, N,, N,, and N,, respectively.

posed numerical technique for the optimization of an
arbitrary design configuration of cross correlation
and prediction of the ideal performance that is pos-
sible with that design. It is shown that the behavior
of the coherent factor modeled versus the angle be-
tween detectors is in agreement with experimental
data!? and analytical investigation.1®3 This factor
permits mapping of the spatial extent of the single-
scattering and multiple-scattering speckles. The
map holds important information about the optimal
displacement of detectors for a given measurement
setup, and it permits a comprehensive investigation
of the suppression of the scattering components even
if their magnitudes are small. As an example, the
quantitative estimation of the negligence of the con-
tribution of the perpendicular single-scattering com-
ponent to the cross-correlation function, which was
first shown experimentally,2 is provided here by nu-
merical modeling.

The body of this paper is organized as follows. In
Section 2 the cross-correlation setup is described.
The algorithm for the rigorous simulation of single-
and multiple-order scattering by an ensemble of mov-
ing particles is discussed in Section 3. The scheme
used for the calculation of the intensity cross-
correlation function is described briefly in Section 4.
In Section 5 the contribution of the second-order scat-
tering to the intensity cross-correlation function from
an ensemble of 9000 spheres is calculated. It is
shown that this technique permits setup optimiza-
tion even if the amount of multiple scattering is
small.

2. Cross-Correlation Setup

The scattering geometry is shown in Fig. 1. A laser
beam of wavelength N\ in vacuum and angular fre-
quency o propagates along the z axis of the XYZ
expenmental coordinate system. A partlcle suspen-
sion of volume fraction & = wd>p,/6 in a cell of vol-

ume V = 2[,21, 2], scatters light into point detectors A
and B in the far field. The detectors’ locations are
given by the spherical coordinates {64, = 0, 4, = ¢ —
3t and {6z = 0, o5 = ¢ = @ + 3}, respectlvely, with
6 = 90° and © = 90°. In other words, both detectors
are located in the xy plane. The average number
density of the particles suspended in a nonabsorbing
liquid of real refractive index n; is defined by p, =
N/V, where N is the number of monodispersed
spheres of diameter d, and refractive index m, = n,
+1X,. Both detectors view the same sample volume
Vo, and the laser illuminates sample volume V.
The intersection of these two volumes, denoted by V,
is a source of single scattering by particles. The av-
erage numbers of particles in these volumes are N,
Ny, and N,

As is shown first,3 considering the volume V,, to be
a cylinder of radius R, and length 2R, the spatial
coherence area of the single scattering far down the y
axis can be estimated by the angular diameters

coh E R (1)
X ’
coh lR

in the x and z directions, respectively, where

2’TT'LL

= k| = 3)

is the wave number of the light in the liquid and k, is
the wave vector of the incident field. To map out the
spatial extent of the single-scattering and the
multiple-scattering speckles, we use a rigorous algo-
rithm for multiple-order scattering simulation.

3. Multiple-Order Scattering By an Ensemble of
Moving Spheres

A. Scattering by an Isolated Spherical Particle

In the context of rigorous Mie theory,14 the electric
field, ES ., scattered by an isolated spherical particle
Z that satisfies Maxwell’'s wave equatlons can be ex-
pressed in terms of an infinite series of the vector
spherical functions M and N (with the origin of coor-
dinates at the center of particle i) as

El, =EDX) Y, >, [aba. N9 (&R}

n=1 m=-n

+ Qa2 Mo (RRQ)], (4)

where X' is the position vector of the origin of partlcle
i in the XYZ expenmental coordinate system, R, is
the vector between the origin of particle i and a point
detector d, D(X') is the relative sensitivity of detector
d,*21% and a,,, , . are the scattered field expansions
(or so-called partial-wave scattering amplitudes) of
order n and degree m. The extra index p denotes the
mode, in which p = 1 and p = 2 refer to the TM and
the TE modes, respectively, of the scattered field.
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The subscript € denotes X (¢ = X) or Y (¢ = Y) polar-
ization of the incident beam. As we are working in
the framework of elastic light scattering, we omit the
time-dependent term exp(~iwt) from all formulas, as
is the normal practice. The incident field strength
in the 2° cross section is given by

| Ly
Ei=E, exp(ikLgexp(—kz: 7) : 5)

were E is the field strength of the incident beam, L,
is the distance that the beam has traveled to the
origin e of the experimental coordinate system, and
L,; is the distance that the beam has traveled
through the suspension of turbidity 22 (in fact, 27 is

the imaginary part of the wave number of light in a
dispersed system) to the origin of particle ;. The

vector of the scattered field E: ,, the vector spherical
harmonics M,,,,, and N,,,,, and the vector R, are given
in a sphencal "coordinate system (R, ¢, and ¢") of
sphere i. The superscript (3) on the coefficients de-
notes that the coefficients are based on the spherical
Hankel functions. The scattering problem (as well
as the problem of internal field) from a single sphere
is solved exactly4; i.e., the partial-wave scattering
amplitudes are expressed in terms of the incident
plane wave as

al*slngly e —aﬁtp U(Xi)pzlnp,s exp(lkoxl)’ (6)

where «,; and «,, are the well-known TM and TE
Lorenz—-Mie coefficients of the isolated sphere 7,10.14
UX) is a dimensionless function that describes the
transverse beam profile,13 the superscript s = 1 de-
notes that only smgle scattering is taken into ac-
count, and, as usual, i = (—1)/2is the unit imaginary
number. The expansion coefficients of the incident
plane wave propagating in direction z are given by®

_ —i 2n+1 o
plnl,x - 2 n(n+1) )
in+1
DP-1n1,x = —2_ (2n+1);
Pmnpe = 0: Im‘7&1;
1
pmn(3~p),s = MPmnp.es Pmnpy = ;pmn(3—p),x' (8)

B. Scattering by an Ensemble of Spherical Particles

When an ensemble of N particles is illuminated by a
plane wave, i.e., N3y = N, the field incident upon
sphere ¢ comprises the field scattered by j sphere,
which is written in the j coordinate system. To solve
the scattering problem by sphere i, we must now
express the field scattered by sphere j in the coordi-
nate system of spherei. This is accomplished by use
of the translation addition theorem for spherical
wave functions.®1© By using this theorem we can
find the amount of the additional (multiple, s = 2)
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scattering from sphere i (caused by the above-
mentioned contribution of spheres j # i) by

J
3 0 l
apt = —al,, > > > [AD.(kRY, ©Y, &), .
J=11=1 k=1
J*i

I(Slnn(kRU @LJ QU) mn(3—p), s] (9)

where the additional coefficients A and B depend
entirely on the distance RY and the direction of trans-
lation ®7, ®Y of originjtoi. The required number of
orders, NJ in the expansions for the scattered field
from the _]th sphere can be estimated from the follow-
ing criterion?:

=l + 4(p) P+ 2, (10)

where ¢/ = kd ',/2 is the Mie parameter. The total
fields, which are scattered by spheres / and j and
incorporate both the single-scattering (s = 1) and the
multiple-scattering (s = 2) components, can now be
written, respectively, as

mnp 3 2 amnp €3 (1 1)
s=1
2
Thnpe = 2, Thnpes (12)
s=1
where
’lnp e U(X )p+1np 3 exp(lkoxj)> (13)
Ny N,
@l = e 24 2 2,
Tk
X [Afina(RR", O, ®)aly,
;zsl'lnn(kRﬂ ®ﬂ (Dj)amn(B—p) E] (14)

are the single-scattering (s = 1) and the multiple-
scattering (s = 2) components, respectively, of the
sphere j.

The scattering equations are now written for all
N particles that participate in the scattering, thus
producing a set of coupled (p = 1, 2) linear equations .
(11) for the partial-wave scattering amplitudes. If
this set of coupled equations is iterated, the various
iteration orders correspond to single scattering, dou-
ble scattering, triple scattering, etc. The set of cou-
pled equations is most commonly solved by iteration
methods®10.1516 or by the order-of-scattering tech-
nique.17.18

Once all partial-wave scattering amplitudes for all
N particles are obtained in their own coordinate sys-
tems, the accompanying vector spherical harmonics
have to be translated from the individual particle
origins back to the common (ensemble) origin, which
coincides with the origin of the XYZ coordinate sys-
tem. This last translation (used in our previous in-
vestigation® in the so-called single—common-origin
approach) causes numerical convergence problems
that have been discussed comprehensively in Ref. 19.



These problems are eliminated if one is interested in
far-zone scattering only. In this case (so-called
multiple-origins approach), the last set of translation
coefficients has a straightforward analytical form,®
and now the problem of exact electromagnetic wave
scattering is solved. The scattered electric field,
E, ., from the entire ensemble of spheres is taken to
be the superposition of scattered fields, E; ., from N,
spheres viewed by the detector, i.e.,

Ny
E,.= > E.. (15)
i=1

C. Far-Zone Approach

Of our practical interest is the detection of the scat-
tered field in the far zone, when smallest distance Ry
for each sphere is larger than the largest distance
between the spheres, RY. For the far-zone assump-
tion, the spherical Hankel functions can be replaced
by their asymptotes,’? and the orthonormal unit vec-
tors #, &, and @' for the i sphere coincide with the
corresponding orthonormal unit vectors 7, 0, and &,
for the entire ensemble. Taking into account the
above-mentioned asymptote of the spherical Hankel
functions, we can write the vector spherical functions
in the far zone'® as

o iy - (oo SPOERD) [ L
an(de) ( 1) kR:i exp km 5
X [,n2(8)8 — T (8)Jexpime’), (16)

expkRY) [ . Lo
kR, )

X [Tmnl(ei)é + iTng(ei)é]eXp(im‘Pi)a (17)

N (RRy) = (=)

where

m
Trne(8) = ——— P cos(8)

d
Trni(0) = a0 P7 cos(0), SinE) o
1

are the scattering functions, P stands for the asso-
ciated Legendre function of the first kind, and L4 is
the distance in the suspension from the origin of par-
ticle i to point detector d. The scattered wave vector
relative to the origin of particle i is defined by

. kR
K =—*
Ry

= k(sin & cos ¢'% + sin ' sin ¢'§ + cos 6'2),
(19)

where %, §, and 2 are the unit vectors of the Cartesian
coordinate system.

We consider that R} ~ R, in the far zone and that
the relation between the position vectors of sphere i
and detector d can be expressed by

R,=R, - X. (20)

By inserting Eq. (20) into Egs. (16) and (17), and then
Egs. (16) and (17) into Eq. (4), we obtain

E. =iTP., (21)

where R is the position vector of the detector in the
experimental frame and

exp(ikR,)

T=E,DX
,DX) 53

exp(ikLe)exp(—k;’," _b_2_g)
(22)

is the coefficient, which does not depend strongly on
the motion of particle i. The vector scattering am-
plitude, P, reflects the main contribution of the par-
ticle motion to the signal in photon cross correlation.
The components of vector P, of the scattering ampli-
tudes, polarized in the 6 and & directions,?° are ex-
pressed by

P, = exp(—ikX)[S5(¢', ¢)ek + S5(0, ¢)e}),  (23)
P, = exp(—ikX)[SY(®, ¢)et + Si(8, ¢lei],  (24)
where e and e§ are the components of the unit polar-

ization vector of the plane wave that illuminates
sphere i and

ad n 2
il(eiy ‘Pi) = 2 2 2 (—i)nainnp,t::y'rmnw—p}(ei)

n=1 m=-n p=1

X exp(im oY),

« n 2
0, o) = > > > (=) g emsTrnp(8)

n=1m=-np=1

X exp(im ¢,

(25)

(26)

m=-n p=1

o n 2

SiE, @) = >, > > () ThunpemyTrnp(6)
n=1
X

exp(im ¢"), (27)

= n 2
51(61'3 ‘Pl) = 2 2 2 (——i)nainnp,e=x7mn(3-—p)(ei>
n=1 m=-n p=1

X exp(im ¢'), (28)

are the four elements of the amplitude scattering
matrix.1520  As was mentioned above, the subscript
¢ for x or y denotes a scattering coefficient calculated
for parallel (along the X axis) or perpendicular (along
Y axis) incident polarization, respectively. We as-
sume the same polarization of the incident wave for
all particles; i.e.,

E
P 29
“" g (29)

E
Py 30
“TE’ (30)

where E, and E, correspond to incident plane-wave
polarization in the x and y directions in the cross
section of the light emission.

The exponential coefficient in Egs. (23) and (24) is
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the product of Eq. (20) in the above-mentioned
multiple-origins scattering approach, and its use
eliminates the last translation of the partial-wave
scattering amplitudes q;,,,. in Eqgs. (25)—(28) from
the origin of each sphere to the common (ensemble)
origin. This exponential coefficient confirms that
our model is in agreement with published results?®
based on deriving the analytical expression for the
vector coefficients of the last translations to the com-
mon origin. The computational efficiency of the
multiple-origins approximation of the scattering by a
particle ensemble in the far zone was investigated
recently!® in comparison with the single-origin ap-
proximation for the far-field scattering.?

An additional increase in the computational effi-
ciency could be reached by simulation of the second-
order scattering only, which is the normal practice in
photon correlation spectroscopy.3-313 Second-order
scattering obviates the solution of linear equations,
and it decreases the upper range of the sum in Eq. (9)
by the number of spheres that are being illuminated
only, i.e., N3 = N;. In this case the scattering ex-
pansions are simulated by Eq. (11) directly, because
the first-order scattering expansions a/,,, . [Eq. (13)]
instead of multiple-order scattering coefficients
@pnpe [(12)] are taken into account for spheresj. In
the second-order approach, Eq. (9) must be modified
by

Ny /A
s=2 __ _ L (3) i ij N\
ainnp,s - anp,s 2 F E E [Aklmn(kR ’ ®ja cI)J)a]mnp,s
j=1  1=1 k=-I
J#F

+ Bg?’nn(kRLJ’ ®ija quj)a/;nn(3~p),e]’ (31)
where the coefficient F reflects the extinction of the
scattered light on the path between spheres j and i,
which is caused by the ignored higher-order scatter-
ing. Asin Refs. 3-5 and 13, the coefficient F is de-
fined by

1 multiple-order scattering
F= nBY .
exp| —k. Y second-order scattering
(32)

4. Intensity Cross-Correlation Function

The intensity cross-correlation function is defined
by13

Gz, 8) = f LDyt + v, (33)

—x

where I, and Iy denote the time-dependent intensi-
ties, which are scattered by measured particles in the
fields of view of detectors A and B, respectively, ¢ is
the time, and T means cross-correlation delay time.
For the most practical cases when the hydrodynamic
interaction of particles does not sufficiently affect the
Gaussian stochastics of the scattered electric fields
E, and Eg, one can use Wick’s theorem3 to model the
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intensity cross-correlation function by the electric-
field terms; i.e.,

G®(1,8) = BL + |[Y? + |W]%, (34)

where

Y= r E (OB, + 7)dt, (35)

~®

W= r EXOE,( + 71)dt;

-

BL = f T EMOE (O f T EXOE,0d (36)

- -

is the baseline.

In practice one always measures the normalized
intensity cross-correlation function g®(r, 8), which
can be modeled by

G®(r, 8) — BL

BL (37

g%, 8) = =y'E)lg" @I,

where v? is the coherence factor, or so-called inter-
cept,’2 and g'V(7) is the electric-field cross-correlation
function. We never ignore the term Y, even if it is
negligible with respect to the term W in our simula-
tions.

For the purpose of investigating the contribution of
the single-scattering and multiple-scattering effects
to the intensity cross-correlation function separately,
the terms Y and W can be expressed by the additional
cross terms Y and Wy,13 as follows:

2 2
Wir, 8) = 2, 2, Wy(x, 3),
et (38

2 2
Y(r,8) = 2, 2, Yi(s, 8),

f=1g=1

where

Y, (s, a)=f E,(t, OEg(t + 7, 0)dt,  (39)

—%

Wi, 8) = J.x EL(, OEs(t + 1, 0dt.  (40)

—0

The subscripts f and g transmit the corresponding
indices 1 and 2 to the superscript s in Egs. (11)—(14)
and (31). Equations (38) are valid when the single-
order scattering and the multiple-order scattering
are statistically independent. It was shown? that
this independence is due to the assumption that one
must make to use Eq. (38), i.e., that N2/N,N, < 1.
Hence the corresponding fg cross term of the normal-
ized intensity cross-correlation function can be mod-
eled by

|Yy(r, O + [Wy(r, )
BL

g, d) = , (41)



where the term denoted by fz = 11 means the single-
scattering cross term, fg = 22 is the multiple-
scattering cross term, fg = 12 is the single—multiple
cross term, and fg = 21 means the multiple—single
cross term.

Mapping of the spatial extent of single-scattering
(fg = 11) speckle, multiple-scattering speckle (fg =
22), and the speckles of combined scattering effects
(the subscripts f and g are absent in this case) can be
performed by the corresponding suppression coeffi-
cient

'Y[gg,pol,s(s)
’Y?g,pol,s(a = O) ’

where the coherence factor of the fg term (or the
contrast?) can be written as

Cf%g,pol,s(a) = (42)

'Y]%g,pol,s(a) = g;”?pol,s(T = O> 8) (43)

The subscript pol for 6 or ¢ shows what kind of com-
ponent, Py or P, [Eqgs. (23) and (24)], of the vector of
the scattering amphtudes P, transmits through the
polarizer positioned in the front of the detectors.

The subscript pol is absent if a polarizer is not used.
As in Section 3, the subscript ¢ for x or ¥ denotes x or
y polarization of the incident field.

For optimization purposes and for analysis of the
fine effects of multiple scattering when the amount of
scattering is small, the relative suppression coeffi-
cient can be useful:

C} poc(®)
RC?g,pol,g(s) = %,

where the base coefficient of the relative suppression
can be taken arbitrarily, depending on the applica-
tion. We use the fg = 11 and ¢ = x subscripts for the
base coefficient.

To investigate the scattering components that are
negligible at 8 = 0 (for example, the 6 single-
scattenng component from an x-polarized incident
field, 'Yuex, or the ¢ single- scattermg component
from a y-polarized incident field, 2, oy)» We must
deﬁne the suppression coefficient for the fg term,

pole [EQ. (42)], taking into account the nonvan-
ﬁed coherence factor, for example Ypol - to avoid
d1v1s1on by zero as

(44)

’Y}%g,pol,e(s)
FY}Z)ol,e(S = O) '

The amount of multiple scattering can be estimated
by the multiple-to-single scattering ratio as

1/2
BLZZ,pol,E)
BLll,pol,E

C?g,pol,s(a) = (45)

(M:S)pol,e = ( (46)

5. Computer Simulations and Discussions

As was mentioned above, the aim of our calculations
is to provide mapping and analysis of the multiple-
scattering suppression phenomena by numerical
modeling. When the modeling is performed with a

personal computer, the total number of spheres in the
investigated suspension is limited to N = 9000.
These monodispersed spherical particles of diameter
d, = 0.115 um and refractive index m, = 1.59 + i0
are suspended in water of refractive 1ncfex ny = 1.33.
The investigated suspension of volume fraction ¢ =
0.005 fills the cell of volume V:

V=212,2], = d3 47

» g ¢ (47)

Below is the estimation of the main parameters (i.e.,
l, L, L, R, and R,) of the scattering scheme

presented in F1g 2, which can be used for the dem-
onstration of an effective suppression of the multiple-
scattering term.

According to the analytical investigation,? the
suppression of the multiple-scattering term in the
field cross-correlation function can be estimated at
the expected detector-displacement angle of & =

8Jéoh/ 4 by

Cone, ( (48)

161TR,,
4

15<Rif> ’

where the angle 8%, [Eq. (1)] defines the coherence
area of the single scattering in the x direction and
(RY) means the average displacement between
spheres i andj. Hence, if we expect to demonstrate
effective suppression of the 1nten31ty multiple-
scattering term by the coefficient C3, ., . o ~ 0.01, the
high of the illuminated volume V,, should be deﬁned

by
15 8"0 . ..
2R, ~— sz,¢,x(f7h)<R”> ~0.06(RY).  (49)
’W

If2R, << (RY) as in relation (49), 1, = [, and R, =R,

= R,, then the average dlsplacement (R”) is compa-
rable with [,/2 in the Z direction and with [,/2 in the
X direction. Inserting [,/2 instead of (RU) into Eq.
(49), we can rewrite Eq. (49) as

2R, = 0.06(1,/2). (50)

Now we can show that the set of parameters of the
scattering scheme (2/, = 2, = 45.8 pm and 2/, = 2R,
=2R,=2R, = 0.683 um) satlsﬁes Egs. (47) and (50)
and it can be used for illustration of the effective
suppression of multiple scattering by the chosen 9000
particles in suspension of volume faction ¢ = 0.005.
To simplify the modeling we omit the turbidity of
the sample, i.e., £ — 0, and we assume uniformity
of the illuminating field and the fields of view of de-
tectors, i.e., D = 1 and B = 1. The fields of view of
both point detectors are wide enough to permit us to
view all 9000 particles contained in the cell. Hence
the number of particles in the corresponding volumes
of the cell are N, = 3, N; = 3, and N, = 9000. For
each particle i and for each displacement & of point
detectors A and B located in the far field, we assume
two scattered wave vectors characterized in sphencal
coordinates by {Ry, ~ R,, 8 =~ 0, = 90°, ¢}y =~ ¢4 =
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Fig. 2. Flow diagram of the simulations:
function.

CCF, cross-correlation

90° — 8} and {R3 =~ R, 05 =~ 65 = 90°, ¢ ~ ¢ = 90°
+ 8}, respectively. The wavelength of the illumi-
nated field in vacuum is taken as A = 0.6328 pm.

A flow diagram of the modeling is presented in Fig.
2. To model particle dynamics we generate 256 en-
sembles of 9000 particles in volume V on a discrete
scale of time ¢#. The second-order electric field, scat-
tered from 9000 particles, is calculated by Egs. (15)
and (21) and stored for each ensemble. These stor-
age data are used for numerical integration by Egs.
(35), (36), (39), and (40). Details of the particle-
dynamic modeling and the numerical integration are
not discussed here. These models as well as their
optimization, presented schematically in Fig. 2, were
published earlier.8

Suppression coefficients C[?g pore(d) and Co; . (3),
modeled for measurements without any receiver po-
larizer and with a polarizer transmitting the P, com-
ponent of the scattered light (which is defined in Ref.
12 as a “perpendicular” component for the x-polarized
incident field; see Fig. 3), are presented versus the
detector displacement in Figs. 4 and Fig. 5, respec-
tively. All results except curve 1 of Fig. 5 were cal-
culated from Eq. (42). Curve 1 of Fig. 5 was
obtained from Eq. (45). Two sets of curves (1-3) and
{(4—6) correspond to the x and y polarizations of the
incident field, respectively. Hence curves (1-3) and
(4-6) of Fig. 4 correspond to the so-called (VV + VH)
and (HV + HH) input—output polarization states,
respectively. On the other hand, curves (1-3) and
curves (4—6) of Fig. 5 correspond to the VH and HH
input-output polarization states, respectively.
Here, V denotes vertical polarization of the incident
field (input channel) or vertical polarization of the
receiver polarizer (output channel) and H means hor-
izontal polarization of the input channel or the output
channel (a more detailed definition is given in Ref.
13).

The results show the suppression of the single-
scattering cross term CZ, (curves 1 and 4), the second-
order scattering cross term C3, (curves 3 and 6 for f =
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single-scattering A

zone 0

Fig. 3. Scattering schematic illustrating by numerical modeling
the multiple-scattering suppression in a particle suspension of
volume fraction ¢ = 0.005. Only volume V, 2R, = 2R, = 2R, =
0.683 pm) contributes to single scattering. The incident field is
polarized in the x direction [e, = 1 and e, = 0; Eqs. (23) and (24)]
or in the y direction (e, = 0, e, = 1). The orthonormal vectors, )
and ¢, denote two polarization states of a receiver polarizer. Two
photodetectors view all N = 9000 particles contained in the cell of
volume V (2, = 2/, = 45.8 yum and 2/, = 0.683 pm).

2 and g = 2), and the modeled cross-correlation func-
tion C* (curves 2 and 5). The map of the single-
scattering coherence area (curve 1 of Fig. 4) is in
agreement with analytical estimation [Eq. (1)]. In
general, we have reached the goal of these investiga-
tions: curve 3 of Fig. 4 illustrates the effectiveness
of second-order scattering suppression by the cross-
correlation technique. As was mentioned above, the
numerical model is limited to 9000 illuminated par-
ticles for simulations by a personal computer. Be-
cause of this limit, the y dimension of our illuminated
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Fig.4. Suppression of the single-scattering cross term C%, (curves
1 and 4), the second-order scattering cross term C2, (curves 3 and
6), and the modeled cross-correlation function C? (curves 2 and 5)
versus detector displacement. The receiver polarizer is absent.
The numbers of particles in the corresponding volumes are N, = 3,
N; =3,and N, = 9000. Two sets of curves (curves 1-3 and 4-6)
correspond to the x and y polarization, respectively, of the incident
field. The detector displacement range of 0.05—0.07 rad can be
used as the optimal one for a given scattering geometry. S, D, and
S + D denocte single, double, and combined (single and double)
scattering, respectively. The subscripts x and y correspond to x
and y polarization, respectively, of the incident field. Hence
curves 1-3 and 4-6 correspond to the so-called (VV + VH) and
(HV + HH) input-output polarization states, respectively.
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Fig.5. Suppression of the single-scattering cross term C2,; (curves
1 and 4), the second-order scattering cross term C3, (curves 3 and
6), and the modeled cross-correlation function C2, (curves 2 and 5)
versus detector displacement. Only the P, component of the scat-
tered light is transmitted through the detector polarizer. The
numbers of particles in the corresponding volumes are N, = 3, N,
= 3, and N, = 9000. Two sets of curves (curves 1-3 and 4-6)
correspond to x and y polarization, respectively, of the incident
field. The single-scattering speckle (curve 1) disappears for the
x-polarized incident field, as was shown first experimentally.12 S,
D, and S + D denote single, double, and combined (single and
double) scattering, respectively. The subscripts x and y corre-
spond to x and y polarization, respectively, of the incident field.
Hence curves 1-3 and 4-6 correspond to the VH and HH input—
output polarization states, respectively.

volume is limited too. As a result, the average in-
terparticle displacement (RY) in the Y direction is
much smaller than in the X and Z directions, and
curve 3 illustrates second-order suppression by a
value that is larger than the expected suppression
C3, of 0.01.

Curve 1 and the coincidence of curves 2 and 3 of
Fig. 5 give a quantitative estimation of the degree to
which the contribution of the perpendicular single-
scattering component to the cross-correlation func-
tion has been neglected, as was shown first
experimentally.’2 As in Ref. 12, the modeling con-
firms the multiple-to-single scattering ratio, (M:S), .,
of 1:0 for the perpendicular component. In Fig. 6 the
relative suppression coefficient RC%(8) is plotted ver-
sus the detector displacement for three scattering
components. The coefficient is found relative to the
single-scattering component for an x-polarized inci-
dent field, C%lx(S). The receiver polarizer is absent.
Curve 1 corresponds to the double-scattering compo-
nent from the x-polarized incident field. Curves 2
and 3 are plotted for second-order scattering and sin-
gle scattering from a y-polarized incident field.
Analysis of Fig. 6 shows that the detector displace-
ment range of 0.05-0.07 rad can be used as the op-
timal one for a given scattering geometry. Modeling
of the square root from the intensity cross-correlation
function g®(1), which is presented in Fig. 7 on a
semilogarithmic scale, confirms the phenomenon of
multiple-scattering suppression by cross correlation.

The results were found for the single-scattering
term, g{2(1) (curves 2 and 3) and for the second-order
scattering cross term g2(7) (curves 4 and 5) at § =
0.05 rad. Curve 1 corresponds to the field autocor-
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Fig. 6. Relative suppression coefficient RC%(3) versus the detector
displacement for three scattering components: the second-order
scattering component from the x-polarized incident field (curve 1)
and second-order scattering (curve 2) and single-scattering (curve
3) from a y-polarized incident field. The detector displacement
range of 0.05—0.07 rad can be used as the optimal one for a given
scattering geometry. S and D denote single and double scatter-
ing, respectively. The subscripts x and y correspond to x and y
polarization, respectively, of the incident field.

relation function gV'(t) of an ideal system of Brown-
ian particles. Two sets of curves, curves 2 and 4 and
3 and 5, show the contributions of the x and y polar-
izations, respectively, of the incident field. The sym-
bol 7* presented first in Fig. 7 denotes the decay time
of the cross-correlation function. It is evident that
all scattering components were suppressed well at §
= 0.05 rad, except the single-scattering component
for an x-polarized incident field (curve 2). ‘The mod-
eling permits the prediction of the nonexponential
behavior of multiple-scattering components (curves 4
and 5 in Fig. 7) despite the small multiple-to-single
scattering ratio, M:S, of approximately 1:650 for the
given sample. This ratio is in agreement with re-
cently published results.12

r/z‘*

0 1
@-1 ————1 ideal
= -3 —o—2 S,
B
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p
S .7 —a—4 D,
=
m_g -o--5 D

Fig. 7. Square root of the intensity cross-correlation function
(CCF) modeled for the single-scattering term, g{3(1) (curves 2 and
3), and for the second-order scattering cross term, g5 (1) (curves 4
and 5), and at 8 = 0.05 rad and for a system of Brownian particles
(curve 1). Curves 2 and 4 are for an x-polarized incident field;
curves 3 and 5 are for a y-polarized incident field. S, D, and S +
D denote single, double, and combined (single and double) scatter-
ing, respectively. The subscripts x and y correspond to x and y
polarization, respectively, of the incident field.
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6. Conclusions

An effective application has been shown of the pro-
posed numerical model for providing a comprehen-
sive analysis of multiple-scattering suppression by a
new cross-correlation technique. In addition to ex-
perimentallt12 and analyticall® investigations, the
modeling confirms that the multiple-scattering
speckle is smaller than the single-scattering speckle,
which can be estimated by Eq. (1) and examined pre-
cisely by mapping of these speckles as shown in Figs.
4 and 6.

These maps hold important information about the
optimal displacement of detectors for a given measure-
ment setup with an arbitrary configuration and about
the predicted suppression of different scattering com-
ponents even if their magnitudes are small. As an
example, quantitative estimation of the degree to
which the contribution of the perpendicular single-
scattering component to the cross-correlation function
has been neglected, which was shown first experimen-
tally,*2is presented in Fig. 5. Changing the history of
particle dynamics,? yields reproducible results.

Modeling of the normalized intensity cross-
correlation function permits prediction of the nonexpo-
nential behavior of multiple-scattering components
{curves 4 and 5 of Fig. 7) despite the small multiple-
to-single scattering ratio. Further increasing the
computation effectiveness of the proposed technique
will permit the modeling and prediction of the perfor-
mance characteristics of more-realistic arbitrary scat-
tering and illuminating?! schemes.

The author is grateful to D. W. Mackowski for
many useful discussions concerning his code, which
he allowed me to adapt for applications in photon
correlation spectroscopy. I alsothank W. V. Meyer,
J. A. Lock, and D. S. Cannell for acquainting me with
their results that are relatively analytical and exper-
imental investigations of multiple-scattering sup-
pression. 1 am grateful to anonymous referees for
their valuable comments and suggestions.
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